
Department of

Computer Science & Engineering

LAB MANUAL

RELATIONAL DATA BASE MANAGEMENT
SYSTEM-2 LAB

B.Tech– VI Semester

KCT College OF ENGG AND TECH.

VILLAGE FATEHGARH

DISTT.SANGRUR

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 1

INDEX

S.No. Experiments

1. Case Study on normalization

2. Study and usage of query optimization techniques

3. Study and usage of backup and recovery features of database
management software

4. Study and usage of any object oriented or object relational database
management software.

5. Apply data mining for the data of CSV file format using WEKA

6. Creating and use Web database in PHP

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 2

EXPERIMENT No.1:

Case study on normalization.

The WORK relation illustrates data about employees, their job title and the department they are
assigned to. From examining sample data and discussions with management we have found that
employees can have multiple job titles and can be assigned to more than one department. Each
department is completely sited in a single location but a city could have more than one
department at some time.

WORK

For this relation, a composed key is required as no one attribute is a candidate. It turns out that
the following SRN depicts the situation:

WORK (Job, EName, EAddr, E#, D#, DName, DLocn)

and the functional dependency diagrams would be:

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 3

There are numerous problems with the data model as it currently stands. We can not add new
employees until they have a job title and a department assignment. We can easily lose
department data by removing an employee who is the sole person assigned to a department.
Certain updates require careful propagation of changes throughout the database.

Careful decomposition can take care of these problems. The employee data makes an obvious
grouping and should be decomposed the get it into at least 2NF. It will actually go to BCNF as
there are no further problems. It is ready to become a table.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 4

The Dept relation is another logical decomposition to remove the partial dependency and move
to 2NF. Careful examination reveals the transitive dependency still exists so further
decomposition is necessary.

Job-Worked winds up looking like the original relation’s key. All three attributes are still the
composed key. Since there are no dependencies, there is nothing to prevent this relation from
being BSNF so it is ready too.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 5

To remove the transitive dependency, we will decompose Dept into Department and Dept-Locn. Each of
these is now in BCNF.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 6

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 7

EXPERIMENT No.2:

Study and usage of query optimization techniques.

Introduction: Query optimization is a function of many relational database management
systems. The query optimizer attempts to determine the most efficient way to execute a given
query by considering the possible query plans.

Generally, the query optimizer cannot be accessed directly by users: once queries are submitted
to database server, and parsed by the parser, they are then passed to the query optimizer where
optimization occurs. However, some database engines allow guiding the query optimizer
with hints.

A query is a request for information from a database. It can be as simple as "finding the address
of a person with SS# 123-45-6789," or more complex like "finding the average salary of all the
employed married men in California between the ages 30 to 39, that earn less than their wives."
Queries results are generated by accessing relevant database data and manipulating it in a way
that yields the requested information. Since database structures are complex, in most cases, and
especially for not-very-simple queries, the needed data for a query can be collected from a
database by accessing it in different ways, through different data-structures, and in different
orders. Each different way typically requires different processing time. Processing times of a
same query may have large variance, from a fraction of a second to hours, depending on the way
selected. The purpose of query optimization, which is an automated process, is to find the way to
process a given query in minimum time. The large possible variance in time justifies performing
query optimization, though finding the exact optimal way to execute a query, among all
possibilities, is typically very complex, time consuming by itself, may be too costly, and often
practically impossible. Thus query optimization typically tries to approximate the optimum by
comparing several common-sense alternatives to provide in a reasonable time a "good enough"
plan which typically does not deviate much from the best possible result.

.

Implementation

Most query optimizers represent query plans as a tree of "plan nodes". A plan node encapsulates
a single operation that is required to execute the query. The nodes are arranged as a tree, in
which intermediate results flow from the bottom of the tree to the top. Each node has zero or
more child nodes—those are nodes whose output is fed as input to the parent node. For example,
a join node will have two child nodes, which represent the two join operands, whereas a sort
node would have a single child node (the input to be sorted). The leaves of the tree are nodes
which produce results by scanning the disk, for example by performing an index scan or a
sequential scan.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 8

Join ordering

The performance of a query plan is determined largely by the order in which the tables are
joined. For example, when joining 3 tables A, B, C of size 10 rows, 10,000 rows, and 1,000,000
rows, respectively, a query plan that joins B and C first can take several orders-of-magnitude
more time to execute than one that joins A and C first. Most query optimizers
determine join order via a dynamic programming algorithm pioneered by IBM's System
R database project. This algorithm works in two stages:

1. First, all ways to access each relation in the query are computed. Every relation in the
query can be accessed via a sequential scan. If there is an index on a relation that can be
used to answer a predicate in the query, an index scan can also be used. For each
relation, the optimizer records the cheapest way to scan the relation, as well as the
cheapest way to scan the relation that produces records in a particular sorted order.

2. The optimizer then considers combining each pair of relations for which a join condition
exists. For each pair, the optimizer will consider the available join algorithms
implemented by the DBMS. It will preserve the cheapest way to join each pair of
relations, in addition to the cheapest way to join each pair of relations that produces its
output according to a particular sort order.

3. Then all three-relation query plans are computed, by joining each two-relation plan
produced by the previous phase with the remaining relations in the query.

sort order can avoid a redundant sort operation later on in processing the query. Second, a
particular sort order can speed up a subsequent join because it clusters the data in a particular
way.

Query planning for nested SQL queries

A SQL query to a modern relational DBMS does more than just selections and joins. In
particular, SQL queries often nest several layers of SPJ blocks (Select-Project-Join), by means
of group by, exists, and not exists operators. In some cases such nested SQL queries can
be flattened into a select-project-join query, but not always. Query plans for nested SQL queries
can also be chosen using the same dynamic programming algorithm as used for join ordering, but
this can lead to an enormous escalation in query optimization time. So some database
management systems use an alternative rule-based approach that uses a query graph model.

Cost estimation

One of the hardest problems in query optimization is to accurately estimate the costs of
alternative query plans. Optimizers cost query plans using a mathematical model of query
execution costs that relies heavily on estimates of the cardinality, or number of tuples, flowing
through each edge in a query plan. Cardinality estimation in turn depends on estimates of
the selection factor of predicates in the query. Traditionally, database systems estimate
selectivity through fairly detailed statistics on the distribution of values in each column, such
as histograms. This technique works well for estimation of selectivities of individual predicates.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.` 9

However many queries have conjunctions of predicates such
as SELECT COUNT(*) FROM R WHERE R.make='Honda' ANDR.model='Accord'. Query
predicates are often highly correlated (for example, model='Accord' implies make='Honda'),
and it is very hard to estimate the selectivity of the conjunct in general.
Poor cardinality estimates and uncaught correlation are one of the main reasons why query
optimizers pick poor query plans. This is one reason why a database administrator should
regularly update the database statistics, especially after major data loads/unloads.

Query optimization techniques

The query processor optimizes queries that are written on the databases. However, this
optimization is limited to the information that the query processor knows about in the databases
and the organization of the databases.

Write effective queries and define logical tables to maximize query performance. Query
optimization is based on the extent to which the database or file system performs the filtering
that is required to obtain the final result set.

Example: A three-segment IMS™ HIDAM DBD contains 10,000 instances of the lowest level
segment (also called the leaf segment).

 If the query processor can build a segment search argument (SSA), which contains a
search argument for every segment, a single access is required. In this case, the query
processor retrieves the final result set, and the connector or the query processor does not
need to perform additional filtering.

 If the query processor cannot build an SSA, 10,000 IMS GET commands are issued. In
this case, the connector or the query processor must filter the intermediate result set to
obtain a single row result set.

Query processor optimization

The query processor optimizes SQL queries based on information in the WHERE clause, index
information, and configuration parameters that activate optimization.

IMS access optimization

You can optimize access to IMS™ data with optimizing methods for queries, Program
Communication Block (PCB) selection options, and Program Specification Block (PSB)
scheduling.

VSAM access optimization

You can optimize access to VSAM data by using keyed access techniques, configuration
parameters, and the VSAM service.

The techniques that you can use to optimize access to VSAM data only apply to VSAM KSDS
data sets.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
10

With ESDS and RRDS data sets, the entire contents of the files must be read to process a query.
You cannot access the data directly, with the exception of accessing an ESDS data set through an
alternate index.

Data server optimization

You can improve query performance with the dispatching priority of the data server and the
Workload Manager (WLM) exit.

The dispatching priority at which the data server runs can have a strong affect on query
performance. In addition, you can use the WLM system exit to place individual queries in WLM
goal mode to control query resource

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
11

EXPERIMENT No. 3:

Study and usage of backup and recovery features of database management.

Purpose of Backup and Recovery
As a backup administrator, your principal duty is to devise, implement, and manage a backup
and recovery trategy. In general, the purpose of a backup and recovery strategy is to protect the
database against data loss and reconstruct the database after data loss. Typically, backup
administration tasks include the following:
■ Planning and testing responses to different kinds of failures
■ Configuring the database environment for backup and recovery
■ Setting up a backup schedule
■ Monitoring the backup and recovery environment
■ Troubleshooting backup problems
■ Recovering from data loss if the need arises
As a backup administrator, you may also be asked to perform other duties that are related to
backup and recovery:
■ Data preservation, which involves creating a database copy for long-term storage
■ Data transfer, which involves moving data from one database or one host to another
The purpose of this manual is to explain how to perform the preceding tasks.

Data Protection

As a backup administrator, your primary job is making and monitoring backups for data
protection. A backup is a copy of data of a database that you can use to reconstruct data. A
backup can be either a physical backup or a logical backup.

Physical backups are copies of the physical files used in storing and recovering a
database. These files include data files, control files, and archived redo logs. Ultimately, every
physical backup is a copy of files that store database information to another location, whether on
disk or on offline storage media such as tape.

Logical backups contain logical data such as tables and stored procedures. You can
use Oracle Data Pump to export logical data to binary files, which you can later import into the
database. The Data Pump command-line clients expdp and impdp use the DBMS_DATAPUMP
and DBMS_METADATA PL/SQL packages.

Physical backups are the foundation of any sound backup and recovery strategy.
Logical backups are a useful supplement to physical backups in many circumstances but are not
sufficient protection against data loss without physical backups.

Media Failures
A media failure is a physical problem with a disk that causes a failure of a read from or write to a
disk file that is required to run the database.
User Errors
User errors occur when, either due to an error in application logic or a manua mistake, data in a
database is changed or deleted incorrectly. User errors are estimated to be the greatest single
cause of database downtime.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
12

Application Errors
Sometimes a software malfunction can corrupt data blocks. In a physical corruption, which is
also called a media corruption, the database does not recognize the block at all: the checksum is
invalid, the block contains all zeros, or the header and footer of the block do not match. If the
corruption is not extensive, then you can often repair it
easily with block media recovery.

Data Preservation
Data preservation is related to data protection, but serves a different purpose. For example, you
may need to preserve a copy of a database as it existed at the end of a business quarter. This
backup is not part of the disaster recovery strategy. The media to which these backups are
written are often unavailable after the backup is complete.
You may send the tape into fire storage or ship a portable hard drive to a testing facility. RMAN
provides a convenient way to create a backup and exempt it from your backup retention policy.
This type of backup is known as an archival backup.
Data Transfer
In some situations you may need to take a backup of a database or database component and
move it to another location. For example, you can use Recovery Manager (RMAN) to create a
database copy, create a tablespace copy that can be imported into another database, or move an
entire database from one platform to another. These tasks are not strictly speaking part of a
backup and recovery strategy, but they do require the use of database backups, and so may be
included in the duties of a backup administrator.

Backup and Recovery Solutions
When implementing a backup and recovery strategy, you have the following solutions available:
■ Recovery Manager (RMAN)
Recovery Manager is fully integrated with the Oracle database to perform a range of backup and
recovery activities, including maintaining an RMAN repository of historical data about
backups. You can access RMAN through the command line or through Oracle Enterprise
Manager.
■ User-managed backup and recovery In this solution, you perform backup and recovery with a
mixture of host operating system commands and SQL*Plus recovery commands.You are
responsible for determining all aspects of when and how backups and recovery are done. These
solutions are supported by Oracle and are fully documented, but RMAN is the preferred solution
for database backup and recovery. RMAN provides a common interface for backup tasks across
different host operating systems, and offers several backup techniques not available through
user-managed methods Most of this manual focuses on RMAN-based backup and recovery.
User-managed backup and recovery techniques are covered in Section VIII, "Performing User-
Managed Backup and Recovery." The most noteworthy are the following:
■ Incremental backups
An incremental backup stores only blocks changed since a previous backup. Thus, they provide
more compact backups and faster recovery, thereby reducing the need to apply redo during data
file media recovery. If you enable block change tracking, then you can improve performance

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
13

by avoiding full scans of every input data file. You use the BACKUP INCREMENTAL
command to perform incremental backups.

■ Block media recovery
You can repair a data file with only a small number of corrupt data blocks without taking it
offline or restoring it from backup. You use the RECOVER BLOCK command to perform block
media recovery.
■ Binary compression
A binary compression mechanism integrated into Oracle Database reduces the size of backups.
■ Encrypted backups
RMAN uses backup encryption capabilities integrated into Oracle Database to store backup
sets in an encrypted format. To create encrypted backups on disk, the database must use the
Advanced Security Option. To create encrypted backups directly on tape, RMAN must use the
Oracle Secure Backup SBT interface, but does not require the Advanced Security Option.
■ Automated database duplication
Easily create a copy of your database, supporting various storage configurations, including direct
duplication between ASM databases.
■ Cross-platform data conversion
Whether you use RMAN or user-managed methods, you can supplement physical backups with
logical backups of schema objects made with Data Pump Export utility. You can later use Data
Pump Import to re-create data after restore and recovery. Logical backups are mostly beyond the
scope of the backup and recovery documentation.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
14

EXPERIMENT No.4:

Study and usage of any object-oriented or object relational databases
management software

4.1 Motivation
The relational model is the basis of many commercial relational DBMS products (e.g., DB2,
Informix, Oracle, Sybase) and the structured query language (SQL) is a widely accepted
standard for both retrieving and updating data. The basic relational model is simple and mainly
views data as tables of rows and columns. The types of data that can be stored in a table are basic
types such as integer, string, and decimal.
Relational DBMSs have been extremely successful in the market. However, the traditional
RDBMSs are not suitable for applications with complex data structures or new data types for
large, unstructured objects, such as CAD/CAM, Geographic information systems, multimedia
databases, imaging and graphics. The RDBMSs typically do not allow users to extend the
type system by adding new data types. They also only support first-normal-form relations in
which the type of every column must be atomic, i.e., no sets, lists, or tables are allowed
inside a column. Due to the new needs in database systems, a number of researches for
OODBMS have begun in the early 80.s.
4.2 Concept & Features
While a relational database system has a clear specification given by Codd, no such
specification existed for object-oriented database systems even when there were already
products in the market. A consideration of the features of both object-oriented systems and
database management systems has lead to a definition of an object-oriented database,
which was presented at the First International Conference on Deductive, and Object-oriented
Databases in the form of a manifesto in 1989. This ’manifesto’ distinguishes between the
mandatory, optional and open features of an object-oriented database.
The mandatory features, which must be present if the system is to be considered (in the

Figure 1 OODB feathues

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
15

opinion of the manifesto authors) to be an object-oriented database, are defined in the
following two paragraphs. The first part describes features of object-oriented system, as the
second part features of database system.
4.2.1 Mandatory features of object-oriented systems
Support for complex objects
A complex object mechanism allows an object to contain attributes that can themselves be
objects. In other words, the schema of an object is not in first-normal-form. Examples of
attributes that can comprise a complex object include lists, bags, and embedded objects.
Object identity
Every instance in the database has a unique identifier (OID), which is a property of an object
that distinguishes it from all other objects and remains for the lifetime of the object. In
object-oriented systems, an object has an existence (identity) independent of its value.
Encapsulation
Object-oriented models enforce encapsulation and information hiding. This means, the state
of objects can be manipulated and read only by invoking operations that are specified within
the type definition and made visible through the public clause.
In an object-oriented database system encapsulation is achieved if only the operations are
visible to the programmer and both the data and the implementation are hidden.
Support for types or classes
Type: in an object-oriented system, summarizes the common features of a set of objects with the
same characteristics. In programming languages types can be used at compilation time to check
the correctness of programs.
Class: The concept is similar to type but associated with run-time execution. The term
class refers to a collection of all objects with the same internal structure (attributes) and
methods. These objects are called instances of the class.
Both of these two features can be used to group similar objects together, but it is normal
for a system to support either classes or types and not both.
Class or type hierarchies
Any subclass or subtype will inherit attributes and methods from its superclass or supertype.
Overriding, Overloading and Late Binding
Overloading: A class modifies an existing method, by using the same name, but with a
different list, or type, of parameters. Overriding: The implementation of the operation will
depend on the type of the object it is applied to. Late binding: The implementation code cannot
be referenced until run-time.
Computational Completeness
SQL does not have the full power of a conventional programming language. Languages such
as Pascal or C are said to be computationally complete because they can exploit the full
capabilities of a computer. SQL is only relationally complete, that is, it has the full power of
relational algebra. Whilst any SQL code could be rewritten as a C++ program, not all C++
programs could be rewritten in SQL.
For this reason most relational database applications involve the use of SQL embedded
within a conventional programming language. The problem with this approach is that whilst
SQL deals with sets of records, programming languages tend to work on a record at a time
basis. This difficulty is known as the impedance mismatch. Object-oriented databases
attempt to provide a seamless join between program and database and hence overcome the

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
16

impedance mismatch. To make this possible the data manipulation language of an
object-oriented database should be computationally complete.

4.2.2 Mandatory features of database systems
A database is a collection of data that is organized so that its contents can easily be
accessed, managed, and updated. Thus, a database system contains the five following
features:
Persistence
As in a conventional database, data must remain after the process that created it has
terminated. For this purpose data has to be stored permanently on secondary storage.
Secondary Storage Management
Traditional databases employ techniques, which manage secondary storage in order to
improve the performance of the system. These are usually invisible to the user of the system.
Concurrency
The system should provide a concurrency mechanism, which is similar to the concurrency
mechanisms in conventional databases.
Recovery
The system should provide a recovery mechanism similar to recovery mechanisms in
conventional databases.
Ad hoc query facility
The database should provide a high-level, efficient, application independent query facility.
This needs not necessarily be a query language but could instead, be some type of graphical
interface.
The above criteria are perhaps the most complete attempt so far to define the features of an
object-oriented database in 1989. Further attempts to define an OODBS standard were
made variables of researchers. One of them is a group called Object Data Management
Group (ODMG). They have worked on an OODBS standard for the industry. The recent
release is ODMG-2 in1997.
4.3 Making OOPL a Database
Basically, an OODBMS is an object database that provides DBMS capabilities to objects that
have been created using an object-oriented programming language (OOPL). The basic
principle is to add persistence to objects and to make objects persistent. Consequently
application programmers who use OODBMSs typically write programs in a native OOPL
such as Java, C++ or Smalltalk, and the language has some kind of Persistent class,
Database class, Database Interface, or Database API that provides DBMS functionality as,
effectively, an extension of the OOPL.
Object-oriented DBMSs, however, go much beyond simply adding persistence to any one
object-oriented programming language. This is because, historically, many object-oriented
DBMSs were built to serve the market for computer-aided design/computer-aided
manufacturing (CAD/CAM) applications in which features like fast navigational access,
versions, and long transactions are extremely important. Object-oriented DBMSs, therefore,
support advanced object-oriented database applications with features like support for
persistent objects from more than one programming language, distribution of data, advanced
transaction models, versions, schema evolution, and dynamic generation of new types.
The following subsection describes object data modeling and the persistency concept in
OODB.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
17

4.3.1 Object data modeling
An object consists of three parts: structure (attribute, and relationship to other objects like
aggregation, and association), behavior (a set of operations) and characteristic of types
(generalization/serialization). An object is similar to an entity in ER model; therefore we
begin with an example to demonstrate the structure and relationship.

The structure of an object Book is defined as following:
class Book {
title: String;
ISDN: Int;
publishedBy: Publisher inverse publish;
writtenBy: Author inverse write;
chapterSet: Set<Chapter>;
}
class Author {
name: String;
authorNo: Int;
write: Book inverse writtenBy;
}

Attributes are like the fields in a relational model. However in the Book example we have,
for attributes publishedBy and writtenBy, complex types Publisher and Author,
which are also objects. Attributes with complex objects, in RDNS, are usually other tables

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
18

linked by keys to the employee table.
Relationships: publish and writtenBy are associations with I:N and 1:1 relationship;
composed_of is an aggregation (a Book is composed of chapters). The 1:N relationship is
usually realized as attributes through complex types and at the behavioral level. For
example,
class Publisher {
…
publish: Set<Book> inverse publishedBy;
…
Method insert(Book book){
publish.add(book);
}
Generalization/Serialization is the is_a relationship, which is supported in OODB through
class hierarchy. An ArtBook is a Book, therefore the ArtBook class is a subclass of Book
class. A subclass inherits all the attribute and method of its superclass.
class ArtBook extends Book {
style: String;
}
Message: means by which objects communicate, and it is a request from one object to
another to execute one of its methods. For example:
Publisher_object.insert (”Rose”, 123,…)
i.e. request to execute the insert method on a Publisher object)
Method: defines the behavior of an object. Methods can be used
. to change state by modifying its attribute values
. to query the value of selected attributes
The method that responds to the message example is the method insert defined in the
Publisher class.
4.3.2 Persistence of objects
Persistence, as mentioned before, means that certain program components .survive. the
termination of the program. Thus these components have to be stored permanently on
secondary storage.
Typically, persistence or non-persistence is specified at object creation time. There are two
possible ways to make an object persistent:
(1) explicitly call built-in function persistence . certain objects are persistent
(2) automatically make object of persistent types persistent . all objects are
persistent
There are several object-oriented DBMSs in the market (e.g., Gemstone, Objectivity/DB,
ObjectStore, Ontos, O2, Itasca, Matisse). These products all support an object-oriented data
model. Specifically, they allow the user to create a new class with attributes and methods,
have the class inherit attributes and methods from superclasses, create instances of the
class each with a unique object identifier, retrieve the instances either individually or
collectively and load and run methods.
Most of these OODBs support a unified programming language and database language.
That is, one language (e.g., C++ or Smalltalk) in which to do both general-purpose
programming and database management.

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
19

Experiment-5

- Apply data mining for the data of CSV file format using

WEKA:-
Solution:-

Step 1 - Choose the file by Open File dialog:-

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
20

Step 2 - Choose the field to visualize the results. Example - emp as shown below:-

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
21

By clicking at All the complete result is as shown below:-

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
22

EXPERIMENT 6

- Creating and use Web database in PHP, shown below:-

Solution:-

Creating a database in PHP using PHPmyadmin:-

This is where you type a name for your database. We're going to create a simple Address Book, so type
that into the textbox:

After you have typed a name for your new database, click the "Create" button. You will be taken to a new
area:

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
23

In this new area, you can create a Table to go in your database. At the moment, as it says, there are No
tables found in the database. But the database itself has been created.

To create a new table, type a name for it in the box at the bottom. You can also type a number for the
Fields textbox. The fields are the columns, remember, and will be things like first_name, surname,
address, etc. You can always add more later, but just type 4 in there. In fact, type it out exactly as it is
below:

When you've finished, click the Go button. Another, more complex, area will appear:

In this new area, you set up the fields in your database. You can specify whether a field is for text, for
numbers, for yes/no values, etc

Fill the data as shown below:-

KCT College of Engineering and Technology Department-CSE

Relational Data Base Management System-2 Lab.`
24

Using a database in PHP:-

<?PHP

$user_name = "root";
$password = "";
$database = "addressbook";
$server = "127.0.0.1";

$db_handle = mysql_connect($server, $user_name, $password);
$db_found = mysql_select_db($database, $db_handle);

if ($db_found) {

$SQL = "SELECT * FROM tb_address_book";
$result = mysql_query($SQL);

while ($db_field = mysql_fetch_assoc($result)) {

print $db_field['ID'] . "
";
print $db_field['First_Name'] . "
";
print $db_field['Surname'] . "
";
print $db_field['Address'] . "
";

}

mysql_close($db_handle);

}
else {

print "Database NOT Found ";
mysql_close($db_handle);

}

?>

