
LAB MANUAL

Simulation and Modeling LAB

B.Tech– VI Semester

KCT College OF ENGG AND TECH.

VILLAGE FATEHGARH

DISTT.SANGRUR

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 1

INDEX

S.NO. TITLE

1 Introduction to Programming in MATLAB.

2 Various types of Input output functions in MATLAB.

3 Programming of Branching statements in MATLAB.

4 Programming of Looping statements in MATLAB.

5 Programming of Functions and plot functions in MATLAB.

6 Arrays in MATLAB.

7 Introduction regarding usage of any Network Simulator.

8 Practical Implementation of Queuing Models using C/C++.

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 2

Experiment 1. Introduction to MATLAB
MATLAB is a mathematical and graphical software package; it has numerical, graphical, and
programming capabilities. It has built-in functions to do many operations, and there are
toolboxes that can be added to augment these functions (e.g., for signal processing). There are
versions available for different hardware platforms, and there are both professional and student
editions. When the MATLAB software is started, a window is opened: the main part is the
Command Window (see Figure 1.1). In the Command Window, there is a statement that says:

In the Command Window, you should see:

>>

The >> is called the prompt. In the Student Edition, the prompt appears as: EDU>> In the
Command Window, MATLAB can be used interactively. At the prompt, any MATLAB
command or expression can be entered, and MATLAB will immediately respond with the result.
It is also possible to write programs in MATLAB, which are contained in script files or M-files.
There are several commands that can serve as an introduction to MATLAB and allow you to get
help:

 info will display contact information for the product
 demo has demos of several options in MATLAB
 help will explain any command; help help will explain how help works
 help browser opens a Help Window

To get out of MATLAB, either type quit at the prompt, or chooses File, then Exit MATLAB
from the menu. In addition to the Command Window, there are several other windows that can
be opened and may be opened by default. What is described here is the default layout for these
windows, although there are other possible configurations. Directly above the Command
Window, there is a pull-down menu for the Current Directory. The folder that is set as the
Current Directory is where files will be saved. By default, this is the Work Directory, but that
can be changed.

To the left of the Command Window, there are two tabs for Current Directory Window and
Workspace Window. If the Current Directory tab is chosen, the files stored in that directory are
displayed. The Command History Window shows commands that have been entered, not just in
the current session (in the current Command Window), but previously as well. This default
configuration can be altered by clicking Desktop, or using the icons at the top-right corner of
each window: either an “x,” which will close that particular window; or a curled arrow, which
in its initial state pointing to the upper right lets you undock that window. Once undocked,
clicking the curled arrow pointing to the lower right will dock the window again.

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 3

Variables and Assignment Statements:
In order to store a value in a MATLAB session, or in a program, a variable is used. The
Workspace Window shows variables that have been created. One easy way to create a variable is
to use an assignment statement. The format of an assignment statement is
variablename = expression
The variable is always on the left, followed by the assignment operator, = (unlike in
mathematics, the single equal sign does not mean equality), followed by an expression. The
expression is evaluated and then that value is stored in the variable. For example, this is the way
it would appear in the Command Window:
>> mynum = 6
mynum =
6
>>
Here, the user (the person working in MATLAB) typed mynum = 6 at the prompt, and
MATLAB stored the integer 6 in the variable called mynum, and then displayed the result
followed by the prompt again. Since the equal sign is the assignment operator, and does not
mean equality, the statement should be read as “mynum gets the value of 6” (not “mynum equals

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 4

6”). Note that the variable name must always be on the left, and the expression on the right. An
error will occur if these are reversed.
>> 6 = mynum
??? 6 = mynum
|
Error: The expression to the left of the equals sign is not
a valid target for an assignment.
>>
Putting a semicolon at the end of a statement suppresses the output. For example,
>> res = 9 – 2;
>>
This would assign the result of the expression on the right side, the value 7, to the variable res; it
just doesn’t show that result. Instead, another prompt appears immediately. However, at this
point in the Workspace Window the variables mynum and res can be seen.

Initializing, Incrementing, and Decrementing:
Frequently, values of variables change. Putting the first or initial value in a variable
is called initializing the variable. Adding to a variable is called incrementing. For example, the
statement
mynum = mynum + 1
increments the variable mynum by 1.

Variable Names:
Variable names are an example of identifier names. We will see other examples of identifier
names, such as filenames, in future chapters. The rules for identifier names are:

1. The name must begin with a letter of the alphabet. After that, the name can contain
letters, digits, and the underscore character (e.g., value_1), but it cannot have a space.

2. There is a limit to the length of the name; the built-in function namelengthmax tells
how many characters this is.

3. MATLAB is case-sensitive. That means that there is a difference between upper- and
lowercase letters. So, variables called mynum, MYNUM, and Mynum are all different.

4. There are certain words called reserved words that cannot be used as variable names.
5. Names of built-in functions can, but should not, be used as variable names. Additionally,

variable names should always be mnemonic, which means they should make some sense.
For example, if the variable is storing the radius of a circle, a name such as “radius”
would make sense; “x” probably wouldn’t.

Expressions:
Expressions can be created using values, variables that have already been created, operators,
built-in functions, and parentheses. For numbers, these can include operators such as
multiplication, and functions such as trigonometric functions. An example of such an expression
would be:
>> 2 * sin(1.4)
ans =
1.9709

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 5

Operators:
There are in general two kinds of operators: unary operators, which operate on a single value or
operand; and binary operators, which operate on two values or operands. The symbol “–”, for
example, is both the unary operator for negation and the binary operator for subtraction.
Here are some of the common operators that can be used with numeric
expressions:
+ addition
– negation, subtraction
* multiplication
/ division (divided by e.g. 10/5 is 2)
\ division (divided into e.g. 5\10 is 2)
^ exponentiation (e.g., 5^2 is 25)

Constants:
Variables are used to store values that can change, or that are not known ahead of time. Most
languages also have the capacity to store constants, which are values that are known ahead of
time, and cannot possibly change. An example of a constant value would be pi, or , which is
3.14159…. In MATLAB, there are functions that return some of these constant values. Some of
these include:
pi 3.14159….
NaN stands for “not a number”; e.g., the result of 0/0

Types:
Every expression, or variable, has a type associated with it. MATLAB supports many types of
values, which are called classes. A class is essentially a combination of a type and the operations
that can be performed on values of that type. For example, there are types to store different kinds
of numbers. For float or real numbers, or in other words numbers with a decimal place (e.g., 5.3),
there are two basic types: single and double. The name of the type double is short for double
precision; it stores larger numbers than single. MATLAB uses a floating point representation for
these numbers.
1. integers, there are many integer types (e.g., int8, int16, int32, and int64). The numbers in the
names represent the number of bits used to store values of that type. For example, the type int8
uses eight bits altogether to store the integer and its sign. Since one bit is used for the sign, this
means that seven bits are used to store the actual number. The range of values that can be stored
in int8 is actually from –128 to 127. This range can be found for any type by passing the name of
the type as a string (which means in single quotes) to the functions intmin and intmax. For
example,
>> intmin(‘int8’)
ans =
–128
>> intmax(‘int8’)
ans =
127
2. The type char is used to store either single characters (e.g., ‘x’) or strings, which
are sequences of characters (e.g., ‘cat’). Both characters and strings are enclosed
in single quotes.
3.The type logical is used to store true/false values.

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 6

Vectors and Matrices:
Vectors and matrices are used to store sets of values, all of which are the same type. A vector
can be either a row vector or a column vector. A matrix can be visualized as a table of values.
The dimensions of a matrix are r × c, where r is the number of rows and c is the number of
columns. This is pronounced “r by c.” If a vector has n elements, a row vector would have the
dimensions 1 × n, and a column vector would have the dimensions n × 1. A scalar (one value)
has the dimensions 1 × 1. Therefore, vectors and scalars are actually just subsets of matrices.
Here are some diagrams showing, from left to right, a scalar, a column vector, a row vector, and
a matrix:
5

3
7
4

5 88 3 11

9 6 3
5 7 2
4 33 8

The scalar is 1 × 1, the column vector is 3 × 1 (3 rows by 1 column), the row
vector is 1 × 4 (1 row by 4 columns), and the matrix is 3 × 3. All the values
stored in these matrices are stored in what are called elements.
MATLAB is written to work with matrices; the name MATLAB is short for
“matrix laboratory.” For this reason, it is very easy to create vector and matrix
variables, and there are many operations and functions that can be used on
vectors and matrices.
A vector in MATLAB is equivalent to what is called a one-dimensional array in
other languages. A matrix is equivalent to a two-dimensional array. Usually,
even in MATLAB, some operations that can be performed on either vectors or

matrices are referred to as array operations. The term array also frequently is
used to mean generically either a vector or a matrix.

MAT LAB Scripts:
A script is a sequence of MATLAB instructions that is stored in a file and saved. The contents of
a script can be displayed in the Command Window using the type command. The script can be
executed, or run, by simply entering the name of the file (without the .m extension).

To create a script, click File, then New, then M-file. A new window will appear
called the Editor. To create a new script, simply type the sequence of statements (notice that line
numbers will appear on the left). When finished, save the file using File and then Save. Make

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 7

sure that the extension .m is on the filename (this should be the default). The rules for filenames
are the same as for variables (they must start with a letter, after that there can be letters, digits, or
the underscore, etc.). By default, scripts will be saved in the Work Directory. If you want to save
the file in a different directory, the Current Directory can be changed.
For example, we will now create a script called script1.m that calculates the area
of a circle. It assigns a value for the radius, and then calculates the area based
on that radius.

script1.m
radius = 5
area = pi * (radius^2)

In the Command Window, the contents of the script can be displayed, and
the script can be executed. The type command shows the contents of the file
named script1.m (notice that the .m is not included):
>> type script1
radius = 5
area = pi * (radius^2)

There are two ways to view a script once it has been written: either open the
Editor Window to view it, or use the type command as shown here to display
it in the Command Window.
To actually run or execute the script, the name of the file is entered at the
prompt (again, without the .m). When executed, the results of the two
assignment statements are displayed, since the output was not suppressed for
either statement.
>> script1
radius =
5
area =
78.5398

Once the script has been executed, you may find that you want to make changes
to it (especially if there are errors!). To edit an existing file, there are several
methods to open it. The easiest are:

 Click File, then Open, then click the name of the file.
 Click the Current Directory tab (if it is not already shown), then doubleclick

the name of the file.

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 8

Documentation:
It is very important that all scripts be documented well, so that people can understand what the
script does and how it accomplishes that. One way of documenting a script is to put comments in
it. In MATLAB, a comment is anything from a % to the end of that particular line. Comments
are completely ignored when the script is executed.
script1b.m

% This program calculates the area of a circle
% First the radius is assigned
radius = 5
% The area is calculated based on the radius
area = pi * (radius^2)

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 9

Experiment2: Various types of data types and Input output functions in
MATLAB.

Input Function
Input statements read in values from the default or standard input device. In most systems, the
default input device is the keyboard, so the input statement reads in values that have been entered
by the user, or the person who is running the script. In order to let the user know what he or she
is supposed to enter, the script must first prompt the user for the specified values.

The simplest input function in MATLAB is called input. The input function is used in
an assignment statement. To call it, a string is passed, which is the prompt that will appear on the
screen, and whatever the user types will be stored in the variable named on the left of the
assignment statement. To make it easier to read the prompt, put a colon and then a space after the
prompt. For example,

>> rad = input(‘Enter the radius: ’)
Enter the radius: 5
rad =
5

If character or string input is desired, ‘s’ must be added after the prompt:

>> letter = input(‘Enter a char: ’,‘s’)
Enter a char: g
letter =
g

However, if blank spaces are entered before other characters, they are included
in the string. In this example, the user pressed the space bar four times before
entering “go”:

>> mystr = input(‘Enter a string: ’, ‘s’)
Enter a string: go
mystr =
go
>> length(mystr)
ans =
6

It is also possible for the user to type quotation marks around the string rather
than including the second argument ‘s’ in the call to the input function:
>> name = input(‘Enter your name: ’);
Enter your name: ‘Stormy’

However, it is better to signify that character input is desired in the input function
itself. Normally, the results from input statements are suppressed with a semicolon at the

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 10

end of the assignment statements, as shown here. Notice what happens if string input has not
been specified, but the user enters a letter rather than a number:

>> num = input(‘Enter a number: ’)
Enter a number: t
??? Error using ==> input
Quick Undefined function or variable ‘t’.
Enter a number: 3
num =
3

MATLAB gave an error message and repeated the prompt. However, if t is the name of a
variable, MATLAB will take its value as the input:

>> t = 11;
>> num = input(‘Enter a number: ’)
Enter a number: t
num =
11

Separate input statements are necessary if more than one input is desired. For
example
>> x = input(‘Enter the x coordinate: ’);
>> y = input(‘Enter the y coordinate: ’);

Output Statements: disp and fprintf:
Output statements display strings and the results of expressions, and can allow for formatting,

or customizing how they are displayed. The simplest output function in MATLAB is disp, which
is used to display the result of an expression or a string without assigning any value to the default
variable ans. However, disp does not allow formatting. For example,

>> disp(‘Hello’)
Hello
>> disp(4^3)
64

Formatted output can be printed to the screen using the fprintf function. For
example,
>> fprintf(‘The value is %d, for sure!\n’,4^3)
The value is 64, for sure!

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 11

To the fprintf function, first a string (called the format string) is passed, which contains any text
to be printed as well as formatting information for the expressions to be printed. In this example,
the %d is an example of format information. The %d is sometimes called a placeholder; it
specifies where the value of the expression that is after the string is to be printed. The character
in the placeholder is called the conversion character, and it specifies the type of value that is
being printed. There are others, but what follows is a list of the simple placeholders:
%d integers (it actually stands for decimal integer)
%f floats
%c single characters
%s strings
Don’t confuse the % in the placeholder with the symbol used to designate a comment. The
character ‘\n’ at the end of the string is a special character called the newline character; when it
is printed the output moves down to the next line.

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 12

Experiment3: Programming of Selection statements in MATLAB.

Relational Expressions:
Conditions in if statements use expressions that are conceptually, or logically, either true or false.
These expressions are called relational expressions, or sometimes Boolean or logical
expressions. These expressions can use both relational operators, which relate two expressions of
compatible types, and logical operators, which operate on logical operands.
1.The relational operators in MATLAB are:
> greater than
< less than
>= greater than or equals
<= less than or equals
== equality
= inequality

2.The logical operators are:

|| or for scalars
&& and for scalars
~ not
1. The If Statement:

The if statement chooses whether or not another statement, or group of statements, is executed.
The general form of the if statement is:
if condition

action
end

For example, the following if statement checks to see whether the value of a variable is negative.
If it is, the value is changed to a positive number by using the absolute value function; otherwise
nothing is changed.
if num < 0
num = abs(num)
end

Eg 2:
>> num = −4;
>> if num < 0
num = abs(num)
end
num =
4
>> num = 5;
>> if num < 0
num = abs(num)
end
>>

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 13

In the above example, The first time the value of the variable is negative so the action is
executed and the variable is modified, but in the second case the variable is positive so the action
is skipped.

2. The If-Else statement:
The if statement chooses whether an action is executed or not. Choosing between two actions, or
choosing from several actions, is accomplished using if-else, nested if, and switch statements.
The if-else statement is used to choose between two statements, or sets of statements.
The general form is:
if condition
action1
else
action2
end

1.For example, to determine and print whether or not a random number in the range from 0 to 1
is less than 0.5, an if-else statement could be used:
if rand < 0.5
disp(‘It was less than .5!’)
else
disp(‘It was not less than .5!’)
end
One application of an if-else statement is to check for errors in the inputs to a script. For
example, an earlier script prompted the user for a radius, and then used that to calculate the area
of a circle. However, it did not check to make sure that the radius was valid (e.g., a positive
number). Here is a modified script that checks the radius:
Eg 2: checkradius.m

% This script calculates the area of a circle
% It error-checks the user’s radius
radius = input(‘Please enter the radius: ’);
if radius <= 0
fprintf(‘Sorry; %.2f is not a valid radius\n’,radius)
else
area = calcarea(radius);
fprintf(‘For a circle with a radius of %.2f,’,radius)
fprintf(‘the area is %.2f\n’,area)
end

Examples of running this script when the user enters invalid and then valid
radii are shown here:
>> checkradius
Please enter the radius: −4
Sorry; −4.00 is not a valid radius
>> checkradius

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 14

Please enter the radius: 5.5
For a circle with a radius of 5.50, the area is 95.03

3. Nested If-Else Statements
The if-else statement is used to choose between two statements. In order to choose from more
than two statements, the if-else statements can be nested, one inside of another. For example,
consider implementing the following continuous mathematical function y = f(x):
y = 1 for x < −1
y = x2 for −1 ≤ x ≤ 2
y = 4 for x > 2
The value of y is based on the value of x, which could be in one of three possible
ranges. Choosing which range could be accomplished with three separate
if statements, as follows:

if x < −1
y = 1;
end
if x > = −1 && x < = 2
y = x^2;
end
if x > 2
y = 4;
end
Since the three possibilities are mutually exclusive, the value of y can be determined by using
three separate if statements. However, this is not very efficient code: all three Boolean
expressions must be evaluated, regardless of the range in which x falls. For example, if x is less
than –1, the first expression is true and 1 would be assigned to y. However, the two expressions
in the next two if statements are still evaluated. Instead of writing it this way, the expressions can
be nested so that the statement ends when an expression is found to be true:

if x < −1
y = 1;
else
% If we are here, x must be > = −1
% Use an if-else statement to choose

% between the two remaining ranges
if x > = −1 && x < = 2
y = x^2;
else
% No need to check
% If we are here, x must be > 2
y = 4;
end
end

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 15

4. The Switch Statement
A switch statement can often be used in place of a nested if-else or an if statement with many
elseif clauses. Switch statements are used when an expression is tested to see whether it is equal
to one of several possible values.
The general form of the switch statement is:

switch switchexpression
case caseexp1
action1

case caseexp2

action2

case caseexp3
action3

otherwise
actionn

end

For example, the switch statement can be used as follows:
switchletgrade.m

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 16

function grade = switchletgrade(quiz)
% This function returns the letter grade corresponding
% to the integer quiz grade argument using switch
% First, error-check
if quiz < 0 || quiz > 10
grade = ‘X’;
else
% If here, it is valid so figure out the
% corresponding letter grade using a switch
switch quiz
‡case 10
grade = ‘A’;
case 9
grade = ‘A’;
case 8
grade = ‘B’;
case 7
grade = ‘C’;
case 6
grade = ‘D’;
otherwise
grade = ‘F’;
end
end

Here are two examples of calling this function:
>> quiz = 22;
>> lg = switchletgrade(quiz)
lg =
X
>> quiz = 9;
>> switchletgrade(quiz)
ans =
A

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 17

Experiment4: Programming of looping statements in MATLAB.

Looping statements that allow other statement(s) to be repeated. The statements that do this are
called looping statements, or loops.

There are two basic kinds of loops in programming: counted loops, and conditional loops. A
counted loop is one that repeats statements a specified number of times (e.g., ahead of time it is
known how many times the statements are to be repeated). In a counted loop, for example, you
might say “repeat these statements 10 times.” A conditional loop also repeats statements, but
ahead of time it is not known how many times the statements will need to be repeated. With a
conditional loop, for example, you might say “repeat these statements until this condition
becomes false.” The statement(s) that are repeated in any loop are called the action of the loop.

There are two different loop statements in MATLAB: the for statement and the
while statement.
1.The for Loop:
The for statement, or the for loop, is used when it is necessary to repeat statement(s) in a script
or function, and when it is known ahead of time how many times the statements will be repeated.
The statements that are repeated are called the action of the loop. For example, it may be known
that the action of the loop will be repeated five times. The terminology used is that we iterate
through the action of the loop five times.

The general form of the for loop is:
for loopvar = range
action
end

where loopvar is the loop variable, range is the range of values through which the loop variable
is to iterate, and the action of the loop consists of all statements up to the end. The range can be
specified using any vector, but normally the easiest way to specify the range of values is to use
the colon operator.
As an example, to print a column of numbers from 1 to 5:
for i = 1:5
fprintf(‘%d\n’,i)
end

2.For eg: Finding sum and product

sum_1_to_n.m

function runsum = sum_1_to_n(n)
% This function returns the sum of
% integers from 1 to n
runsum = 0;
for i = 1:n
runsum = runsum + i;

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 18

end

As an example, if 5 is passed to be the value of the input argument n, the function will calculate
and return 1 + 2 + 3 + 4 + 5, or 15:
>> sum_1_to_n(5)
ans =
15

2.Nested for Loops:
The action of a loop can be any valid statement(s). When the action of a loop is another loop, this
is called a nested loop. As an example, a nested for loop will be demonstrated in a script that will
print a box of *’s. Variables in the script will specify how many rows and columns to print.

For example, if rows has the value 3, and columns has the value 5, the
output would be:

printstars.m

% Prints a box of stars
% How many will be specified by 2 variables
% for the number of rows and columns
rows = 3;
columns = 5;
% loop over the rows
for i=1:rows
% for every row loop to print *’s and then one \n
for j=1:columns
fprintf(‘*’)
end
fprintf(‘\n’)
end

Running the script displays the output:
>> printstars

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 19

2.For eg: To print a triangle stars

printtristars.m

% Prints a triangle of stars
% How many will be specified by a variable
% for the number of rows
rows = 3;
for i=1:rows
% inner loop just iterates to the value of i
for j=1:i
fprintf(‘*’)
end
fprintf(‘\n’)
end

>> printtristars
*
**

3.While Loops:
The while statement is used as the conditional loop in MATLAB; it is used to repeat an action
when ahead of time it is not known how many times the action will be repeated.

The general form of the while statement is:
while condition
action
end

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 20

For eg: factgthigh.m

function facgt = factgthigh(high)
% Finds the first factorial > high
i=0;
fac=1;
while fac <= high
i=i+1;

fac = fac * i;
end
facgt = fac;

Here is an example of calling the function, passing 5000 for the value of the
input argument high.
>> factgthigh(5000)
ans =
5040

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 21

Experiment 5: Programming of Functions and plot functions in
MATLAB.

User-Defined Functions that Return a Single Value: These are functions that the programmer
defines, and then uses, in either the Command Window or in a script. Functions can return
different types of results. For now, we will concentrate on the kind of function that calculates and
returns a single result, much like builtin functions such as sin and abs. The length function is an
example of a built-in function that calculates a single
value; it returns the length of a vector. As an example,

length(vec) is an expression; it represents the number of elements in the vector vec. This
expression could be used in the Command Window or in a script. Typically,
the value returned from this expression might be assigned to a variable:
>> vec = 1:3:10;
>> lv = length(vec)
lv =
4
Alternatively, the length of the vector could be printed
>> fprintf(‘The length of the vector is %d\n’, length(vec))
The length of the vector is 4

Function Definitions:
There are different ways to organize scripts and functions, but for now every function that we
write will be stored in a separate M-file, which is why they are commonly called M-file
functions.
A function in MATLAB that returns a single result consists of

 The function header (the first line); this has
– the reserved word function
– since the function returns a result, the name of the output argument followed by the assignment
operator =
– the name of the function (Important: This should be the same as the name of the M-file in
which this function is stored in order to avoid confusion)
– the input arguments in parentheses; these correspond to the arguments that are passed to the
function in the function call

 A comment that describes what the function does (this is printed if help is used)
 The body of the function, which includes all statements and eventually must assign a

value to the output argument
The general form of a function definition for a function that calculates and
returns one value looks like this:
functionname.m

function outputargument = functionname(input arguments)
% Comment describing the function
Statements here; these must include assigning a value to
the output argument

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 22

For example, the following is a function called calcarea, which calculates and
returns the area of a circle; it is stored in a file called calcarea.m.
For eg: calcarea.m

function area = calcarea(rad)
% This function calculates the area of a circle
area = pi * rad * rad;

The function can be displayed in the Command Window using the type
command.
>> type calcarea
function area = calcarea(rad)
% This function calculates the area of a circle
area = pi * rad * rad;

Calling a Function:
Here is an example of a call to this function in which the value returned is
stored in the default variable ans:

>> calcarea(4)
ans =
50.2655

Technically, calling the function is done with the name of the file in which
the function resides. In this example, the function name is calcarea and the name of the file is
calcarea.m. The result returned from this function can also be stored in a variable in an
assignment statement; the name could be the same as the name of the output argument in the
function itself but that is not necessary; for example, either of these assignments would be fine:

>> area = calcarea(5)
area =
78.5398
>> myarea = calcarea(6)
myarea =
113.0973

The value returned from the calcarea function could also be printed using either disp or fprintf:
>> disp(calcarea(4))
50.2655
>> fprintf(‘The area is %.1f\n’, calcarea(4))
The area is 50.3
Notice that the printing is not done in the function itself; rather, the function returns the area and
then a print statement can print or display it. Using help with the function displays the
contiguous block of comments under the function header:

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 23

>> help calcarea
This function calculates the area of a circle

Calling a User-Defined Function from a Script:
Now, we’ll modify our script that prompts the user for the radius and calculates the area of a
circle, to call our function calcarea to calculate the area of the circle rather than doing this in the
script.

For eg: script3.m

% This script calculates the area of a circle
% It prompts the user for the radius
radius = input(‘Please enter the radius:’);
% It then calls our function to calculate the
% area and then prints the result
area = calcarea(radius);
fprintf(‘For a circle with a radius of %.2f,’,radius)
fprintf(‘the area is %.2f\n’,area)

So, the program consists of the script script3 and the function calcarea.
Running this will produce the following:
>> script3
Please enter the radius: 5
For a circle with a radius of 5.00, the area is 78.54

The Plot Function:
For now, we’ll start with a very simple graph of one point using the plot function. The following
script, plotonepoint, plots one point. To do this, first values are given for the x and y coordinates
of the point in separate variables. The point is then plotted using a red*. The plot is then
customized by specifying the minimum and maximum values on first the x- and then y-axis.
Labels are then put on the x-axis, the y-axis, and the graph itself using the function xlabel,
ylabel, and title. All this can be done from the Command Window, but it is much easier to use a
script. The following shows the contents of the script plotonepoint that accomplishes this. The x-
coordinate represents the time of day (e.g., 11am) and the y-coordinate represents the
temperature in degrees Fahrenheit at that time:
For eg: plotonepoint.m

% This is a really simple plot of just one point!
% Create coordinate variables and plot a red ‘*’
x = 11;
y = 48;
plot(x,y,‘r*’)
% Change the axes and label them
axis([9 12 35 55])
xlabel(‘Time’)
ylabel(‘Temperature’)

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 24

% Put a title on the plot
title(‘Time and Temp’)

In the call to the axis function, one vector is passed. The first two values are the minimum and
maximum for the x-axis, and the last two are the minimum and maximum for the y-axis.
Executing this script brings up a Figure Window with the plot (see Figure 2.1). To be more
general, the script could prompt the user for the time and temperature, rather than just assigning
values. Then, the axis function could be used based on whatever the values of x and y are, for
example, axis([x–2 x+2 y–10 y+10]) In order to plot more than one point, x and y vectors are
created to store the values of the (x,y) points. For example, to plot the points
(1,1)
(2,5)
(3,3)
(4,9)
(5,11)
(6,8)
first an x vector is created that has the x values (since they range from 1 to 6 in steps of 1, the
colon operator can be used) and then a y vector is created with the y values. This will create (in
the Command Window) x and y vectors and then plot them
>> x = 1:6;
>> y = [1 5 3 9 11 8];
>> plot(x,y)
Notice that the points are plotted with straight lines drawn in between. Also, the axes are set up
according to the data; for example, the x values range from 1 to 6 and the y values from 1 to 11,
so that is how the axes are set up. Also, notice that in this case the x values are the indices of the
y vector (the y vector has six values in it, so the indices iterate from 1 to 6). When this is the
case, it is not necessary to create the x vector.

For example, >> plot(y) will plot exactly the same figure without using an x vector.

Simple Related Plot Functions:
Other functions that are useful in customizing plots are clf, figure, hold, legend, and grid.
1. use help to find out more about them
2. clf clears the Figure Window by removing everything from it.
3. figure creates a new, empty Figure Window when called without any arguments. Calling it as
figure(n) where n is an integer is a way of creating and maintaining multiple Figure Windows,
and of referring to each individually.
4.hold is a toggle that freezes the current graph in the Figure Window, so that new plots will be
superimposed on the current one. Just hold by itself is a toggle, so calling this function once
turns the hold on, and then the next time turns it off. Alternatively, the commands hold on and
hold off can be used.
5.legend displays strings passed to it in a legend box in the Figure Window, in order of the plots
in the Figure Window.
6.grid displays grid lines on a graph. Called by itself, it is a toggle that turns the grid lines on and
off. Alternatively, the commands grid on and grid off can be used.

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 25

Experiment 6: Arrays in MATLAB.

Cell Array: A cell array is a kind of data structure that stores values of different types. Cell
arrays can be vectors or matrices; the different values are stored in the elements of the array. One
very common use of a cell array is to store strings of different lengths.

Creating Cell Arrays
There are several ways to create cell arrays. For example, we will create a cell array in which one
element will store an integer, one element will store a character, one element will store a vector,
and one element will store a string. Just as with the arrays we have seen so far, this could be a 1 4
row vector, a 4 1 column vector, or a 2 2 matrix. The syntax for creating vectors and matrices is
the same as before. Values within rows are separated by spaces or commas, and rows are
separated by semicolons. However, for cell arrays, curly braces are used rather than square
brackets.

For example, the following creates a row vector cell array with the four different types of values:
>> cellrowvec = {23, ‘a’, 1:2:9, ‘hello’}
cellrowvec =
[23] ‘a’ [1x5 double] ‘hello’

To create a column vector cell array, the values are instead separated by semicolons:
>> cellcolvec = {23; ‘a’; 1:2:9; ‘hello’}
cellcolvec =
[23]
‘a’
[1x5 double]
‘hello’

This method creates a 2 2 cell array matrix:
>> cellmat = {23 ‘a’; 1:2:9 ‘hello’}
cellmat =
[23] ‘a’
[1x5 double] ‘hello’

Another method of creating a cell array is simply to assign values to specific array elements and
build it up element by element. However, as explained before, extending an array element by
element is a very inefficient and time-consuming method. It is much more efficient, if the size is
known ahead of time, to preallocate the array. For cell arrays, this is done with the cell function.
For example, to preallocate a variable mycellmat to be a 2 2 cell array, the cell function would be
called as follows:

>> mycellmat = cell(2,2)
mycellmat =
[] []
[] []

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 26

Note that this is a function call so the arguments to the function are in parentheses. This creates a
matrix in which all the elements are empty vectors. Then, each element can be replaced by the
desired value. How to refer to each element in order to accomplish this will be explained next.

There are several methods of displaying cell arrays. The celldisp function displays
all elements of the cell array:
>> celldisp(cellrowvec)
cellrowvec{1} =
23
cellrowvec{2} =
a
cellrowvec{3} =
1 3 5 7 9
cellrowvec{4} =
hello

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 27

Experiment 7: Introduction regarding usage of any Network Simulator.

Network Simulator version 2 (NS-2) is a free and open source discrete event network simulator
developed at UC Berkeley You can add your own protocol, contribute to the code and, from time
to time, you need to troubleshoot some of the bugs NS is a discrete event simulator where the
advance of time depends on the timing of events which are maintained by a scheduler. NS-2
works under Linux, Mac, and Windows. Current release is ns-2.31. Release under work: ns-3
where Inria takes part of the development process.

NS-2 has a large and rich library of network and protocol objects. It covers a large part
of applications (Web, FTP, CBR,. . .), protocols (transport and routing protocols), network types
(Satellite links, wired and wireless LAN), network elements (mobile nodes, wireless channel
models, link and queue models,. . .) and traffic models (exponential, uniform, . . .). NS also
allows to add and test new protocols and applications and/or to modify existing ones. NS-2 is
based on an object oriented simulator written in C++ and a OTcl interpreter (an object oriented
extension of Tool Command Language TCL).
These different objects are written in C++ code in order to achieve efficiency in the simulation
and faster execution times. (e.g.

Steps of a NS simulation:
Define the scenario to simulate:
1. Create the simulator object
2. { Turn on tracing }
3. Setup the network nodes {and links }
4. Setup the routing mechanism
5. Create transport connections
6. Setup user applications
7. Schedule data transmission
8. Stop the simulation
Execute the OTcl script in a Linux shell: > ns example.tcl
Extract the results from the trace files: awk, xgraph, nam,
matlab, etc .

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 28

Experiment 8: Practical Implementation of Queuing Models using C/C++.

SIMULATION OF A SINGLE SERVER QUEUE:
we will construct a simulation model for single queue and a single server, say a machine shop. In
a real life dynamic system, time flow is an essential element. Whether it is a simulation model of
queuing system, manufacturing system of inventory control, many parameters in these are
function of time. Thus time flow mechanism is an essential part in a simulation model. There of
two basic ways of incrementing time in a simulation model as.
(a) Fixed Time Increment: In fixed time increment model, also called Time Oriented
Simulation, events are recorded after a fixed interval of time, which is constant during
the simulation period. After the end of each interval, it is noted how many customers have
arrived in a queue, and how many have left the server after being served. Attempt in this
system is to keep time interval as small as possible, so that minor details of model are
monitored. Possible in one time interval, only one customer arrives and only one leaves.
Fixed time increment simulation is generally preferred for continuous simulation. Numerical
methods, where time is taken as independent variable are one such example.
(b) Next Event Increment Simulation: This method is also called Event Oriented
Simulation. In this system, time is incremented when an event occurs. For example in
queuing, when a customer arrives, clock is incremented by his arrival time. In such case
time period for simulation may be stochastic.

Program : Single Queue Simulation
// Single queue simulation
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>//contains rand() function
#include <math.h>
#include <conio.h>
#include<iomanip.h>
void main(void)
{ /* Single server queue:
arrival and service times are normally distributed.
mean and standard deviation of arrivals are 10 and 1.5 minutes.
mean and standard deviation of service times are 9.5 and 1.0 */
int i,j,run = 10;
double x,x1,x2, st, awt, pcu, wt=0, iat=0,it;
double mean=10., sd=1.5, mue=9.5, sigma=1.0;
double sb=0.,se=0.,cit=0.,cat=0.,cwt=0.;
ofstream outfile(“output.txt”,ios::out);
outfile<<“\n i r ’ IAT CAT SB r’ ST SE WT IT\n”;
for (j = 1; j <= run; ++ j)
{
//Generate inter arrival time
double sum=0;

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 29

for (i=1; i < = 12; ++i)
{
x = rand()/32768.0;
sum=sum+x;
}
x1=mean+sd*(sum–6.);
iat= x1;
//cout<<“iat=”<<iat;
cat=cat+iat;
//cout<<“cat=”<<cat;
if(cat<=se)
{
sb=se;
wt=se–cat;
cwt=cwt+wt;
// cout<<“cwt=”<<cwt;
}
Else
{
sb=cat;
it=sb-se;
cit=cit+it;
}
//generate service time
sum=0.;
for(i=1; i<=12;++i)
{x=rand()/32768.;
sum=sum+x;
x2=mue+sigma*(sum-6.);
st=x2;
se=sb+st;
}
outfile<<j<<‘\t’<<setprecision(4)<<x1<<‘\t’<<setprecision(4)<<iat<<‘\t’<<setprecision
(4)<<cat<<‘\t’<< setprecision (4)<<sb<<‘\t’<< setprecision (4)<<x2<<‘\t’<<
setprecision (4)<<st<<‘\t’<< setprecision(4)<<se<<‘\t’<<setprecision(4)
<<wt<<‘\t’<<setprecision (4)<<it<<“\n”;
}
awt=cwt/run;
pcu=(cat–cit)*100./cat;
outfile<<“Average waiting time\n”;
outfile<<awt;
outfile<<“Percentage capacity utilization\n”<<pcu;
}
Output of this program is given below. Ten columns are respectively number of arrival, I,
random number r′, inter arrival time IAT, cumulative arrival time CAT, time at which service
begins

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 30

SB, random number for service time r′, service time ST, time for service ending SE, waiting
time WT, and idle time IT.

Output of the program:

Simulation of Single Queue Multiple Servers:

Simulation of multiple server queue is very important seeing its application in day to day life.
Let us consider a case of bank where there are two service counters. Customers arrive in the
bank according to some probability distribution for arrival times. When a customer enters the
bank, he checks whether a counter is free or not. If a counter is free, he will go to that counter,
else he will stand in queue of one of the counter, preferably in a smaller queue increasing the
queue length by one. Customer is attended at the service counter as per first come first served
rule. The service time from each service counter can be viewed as independent sample from
some
specified distribution. It is not necessary that inter arrival time or service time be exponential.
Queuing system although simple to describe, is difficult to study analytically. In such cases
simulation is the only alternative.

Program : Single Queue Two Servers Simulation
// Single queue two servers simulation
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>//contains rand() function
#include <math.h>
#include <conio.h>

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 31

#include<iomanip.h>
void main(void)
{ /* M/D/2/3 queuing system.*/
int k,q=0,qmax=3,count=0,counter;
double r, iat,clock=0., nat=0., wt2=0., wt1=0.,it1=0.,it2=0.,cit1=0.,
cit2=0.;
double mean=3.,lambda1=5.,lambda2=4.,se1=0.,se2=0.,run=150;
ofstream outfile(“output.txt”,ios::out);
outfile<<“\n CLOCK IAT NAT SE1 SE2 QUE COUNT
CIT1CIT2 \n”;
// Generate first arrival
while (clock<=run){
//Check the state of arriv7al and update que
r = rand()/32768.0;
iat=(-mean)*log(1–r);
nat=nat+iat;
se1=lambda1;//Service time taken by first server
counter=1;//First customer has come counter=1

outfile.precision(4);
outfile<<clock<<‘\t’<<iat<<‘\t’<<nat<<‘\t’<<se1<<‘\t’<<se2<<‘\t’<<q<<‘\t’
<<count<<‘\t’<<cit1<<cit2<<endl;
//it1 and it2 are idle times for two servers.
while(clock<=run)
{
if(nat<=se1 && nat<=se2){
clock=nat; q=q+1;
r = rand()/32768.0;
iat=(–mean)*log(1–r);
nat=nat+iat; counter=counter+1;
}
else if(se1<=nat && se1<=se2) clock=se1;
else clock=se2;
if (q>qmax){ count=count+1;
q=q–1;
}
if (q>=1 && se1<=clock) {
it1=clock–se1;
cit1=cit1+it1;
se1=clock+lambda1;
q=q–1;
}
if(q>=1 &&se2<=clock)
{
it2=clock–se2;
cit2=cit2+it2;

KCT College of Engineering and Technology Department-CSE

Simulation and Modeling Lab 32

se2=clock+lambda2;
q=q–1;
}
if(q==0 && se1<=clock)
{
clock=nat;
it1=clock–se1;
cit1=cit1+it1;
se1=nat+lambda1;
se1=nat+lambda1;
r = rand()/32768.0;
iat=(–mean)*log(1–r);
nat=nat+iat;
counter=counter+1;
}
if(q==0 && se2<=clock)
{
clock=nat;
it2=clock–se2;
cit2=cit2+it2;
se2=nat+lambda2;
r = rand()/32768.0;
iat=(–mean)*log(1–r);
nat=nat+iat;
counter=counter+1;
}
outfile<<clock<<‘\t’<<iat<<‘\t’<<nat<<‘\t’<<se1<<‘\t’<<se2<<‘
\ t ’ < < q < < ‘ \ t ’ < < c o u n t < < ‘ \ t ’ < < c i t 1 < < ‘ \ t ’ < < c i t 2 < < e n d l ;
}
outfile.precision(4);
outfile<<“clock=”<<clock<<“cit1=”<<cit1<<“cit2=”<<cit2<<“counter=”<<counter<<endl;
outfile<<“Queuing system M/D/2/3”<<endl;
outfile<<“Mean of the exponential distribution=”<<mean<<endl;
outfile<<“service time of two servers=”<<lambda1<<‘\t’<<lambda 2<<endl;
outfile<<“Simulation run time=”<<clock<<endl;
outfile<<“Number of customers arrived”<<counter<<endl;
outfile<<“Number of customers returned without service”<<count<<endl;
outfile<<“idle time of serverI\n”<<cit1<<endl;
outfile<<“idle time of server II\n”<<cit2<<endl;
outfile<<“Percentage idle time of serverI\n”<<cit1*100/clock<<endl;
outfile<<“Percentage idle time of serverII\n”<<cit2*100/clock<<endl;
}
cout<<“any number”<<endl;
cin>>k;
}

